Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.635
Filtrar
1.
Oncotarget ; 15: 200-218, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38484152

RESUMO

We describe the analytical validation of NeXT Personal®, an ultra-sensitive, tumor-informed circulating tumor DNA (ctDNA) assay for detecting residual disease, monitoring therapy response, and detecting recurrence in patients diagnosed with solid tumor cancers. NeXT Personal uses whole genome sequencing of tumor and matched normal samples combined with advanced analytics to accurately identify up to ~1,800 somatic variants specific to the patient's tumor. A personalized panel is created, targeting these variants and then used to sequence cell-free DNA extracted from patient plasma samples for ultra-sensitive detection of ctDNA. The NeXT Personal analytical validation is based on panels designed from tumor and matched normal samples from two cell lines, and from 123 patients across nine cancer types. Analytical measurements demonstrated a detection threshold of 1.67 parts per million (PPM) with a limit of detection at 95% (LOD95) of 3.45 PPM. NeXT Personal showed linearity over a range of 0.8 to 300,000 PPM (Pearson correlation coefficient = 0.9998). Precision varied from a coefficient of variation of 12.8% to 3.6% over a range of 25 to 25,000 PPM. The assay targets 99.9% specificity, with this validation study measuring 100% specificity and in silico methods giving us a confidence interval of 99.92 to 100%. In summary, this study demonstrates NeXT Personal as an ultra-sensitive, highly quantitative and robust ctDNA assay that can be used to detect residual disease, monitor treatment response, and detect recurrence in patients.


Assuntos
DNA Tumoral Circulante , Neoplasias , Humanos , DNA Tumoral Circulante/genética , Mutação , Neoplasias/diagnóstico , Neoplasias/genética , DNA de Neoplasias/genética , Bioensaio , Biomarcadores Tumorais/genética
2.
Tumour Biol ; 46(s1): S1-S7, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38517827

RESUMO

Blood-based diagnostics for lung cancer support the diagnosis, estimation of prognosis, prediction, and monitoring of therapy response in lung cancer patients. The clinical utility of serum tumor markers has considerably increased due to developments in serum protein tumor markers analytics and clinical biomarker studies, the exploration of preanalytical and influencing conditions, the interpretation of biomarker combinations and individual biomarker kinetics, as well as the implementation of biostatistical models. In addition, circulating tumor DNA (ctDNA) and other liquid biopsy markers are playing an increasingly prominent role in the molecular tumor characterization and the monitoring of tumor evolution over time. Thus, modern lung cancer biomarkers may considerably contribute to an individualized companion diagnostics and provide a sensitive guidance for patients throughout the course of their disease. In this special edition on Tumor Markers in Lung Cancer, experts summarize recent developments in clinical laboratory diagnostics of lung cancer and give an outlook on future challenges and opportunities.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Biomarcadores Tumorais/genética , Biópsia Líquida , DNA de Neoplasias/genética , Pulmão/patologia
3.
Curr Treat Options Oncol ; 25(4): 510-522, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472567

RESUMO

OPINION STATEMENT: Circulating tumor DNA (ctDNA) refers to small fragments of DNA released into the bloodstream by cancer cells. It is obtained through "liquid biopsy;" which most commonly refers to plasma or blood samples, but can be obtained from a number of bodily fluids including ascitic fluid, saliva, and even urine and stool. ctDNA is detected via polymerase chain reaction (PCR) or next-generation sequencing (NGS). The DNA from these samples is analyzed for the detection of point mutations, copy-number alterations, gene fusion, and DNA methylation. These results have the potential for use in cancer diagnosis, determining prognosis, targeting gene-specific therapies, and monitoring for/predicting disease recurrence and response to treatment. ctDNA offers an alternative to tissue biopsy; it is less invasive and can be monitored serially over time without multiple procedures. Moreover it may have the ability to detect disease recurrence or predict behavior in a way that solid tissue biopsies, tumor marker surveillance, and imaging cannot. Recent explosion in interest in ctDNA shows promising developments for widespread adoption of these techniques in cancer care. However, the use of ctDNA in diagnosis and treatment of gynecologic malignancies is currently limited, compared to adoption in other solid-organ tumors such as breast and colorectal cancers. Compared to other cancer types, there appear to be fewer comprehensive studies and clinical validations specifically focusing on the use of ctDNA in gynecologic cancers. More research is needed in this area to advance the potential for use of ctDNA in ovarian, endometrial, and cervical cancers before this can be routinely adopted to improve care for patients with gynecologic malignancies.


Assuntos
DNA Tumoral Circulante , Neoplasias dos Genitais Femininos , Humanos , Feminino , DNA Tumoral Circulante/genética , Neoplasias dos Genitais Femininos/diagnóstico , Neoplasias dos Genitais Femininos/genética , Neoplasias dos Genitais Femininos/terapia , Recidiva Local de Neoplasia/genética , DNA de Neoplasias/genética , Biópsia Líquida/métodos , Biomarcadores Tumorais/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação
4.
Cancer Sci ; 115(4): 1283-1295, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38348576

RESUMO

Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in circulating tumor deoxyribonucleic acid (ctDNA) have been reported as representative noninvasive prognostic markers for pancreatic ductal adenocarcinoma (PDAC). Here, we aimed to evaluate single KRAS mutations as prognostic and predictive biomarkers, with an emphasis on potential therapeutic approaches to PDAC. A total of 128 patients were analyzed for multiple or single KRAS mutations (G12A, G12C, G12D, G12R, G12S, G12V, and G13D) in their tumors and plasma using droplet digital polymerase chain reaction (ddPCR). Overall, KRAS mutations were detected by multiplex ddPCR in 119 (93%) of tumor DNA and 68 (53.1%) of ctDNA, with a concordance rate of 80% between plasma ctDNA and tumor DNA in the metastatic stage, which was higher than the 44% in the resectable stage. Moreover, the prognostic prediction of both overall survival (OS) and progression-free survival (PFS) was more relevant using plasma ctDNA than tumor DNA. Further, we evaluated the selective tumor-suppressive efficacy of the KRAS G12C inhibitor sotorasib in a patient-derived organoid (PDO) from a KRAS G12C-mutated patient using a patient-derived xenograft (PDX) model. Sotorasib showed selective inhibition in vitro and in vivo with altered tumor microenvironment, including fibroblasts and macrophages. Collectively, screening for KRAS single mutations in plasma ctDNA and the use of preclinical models of PDO and PDX with genetic mutations would impact precision medicine in the context of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Biomarcadores Tumorais/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/diagnóstico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , DNA de Neoplasias/genética , Mutação , Microambiente Tumoral
5.
Sci Rep ; 14(1): 4973, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424110

RESUMO

In China, circulating tumor DNA analysis is widely used and numerous assays are available. Systematic evaluation to help users make informed selections is needed. Nine circulating tumor DNA assays, including one benchmark assay, were evaluated using 23 contrived reference samples. There were two sample types (cell-free DNA and plasma samples), three circulating tumor DNA inputs (low, < 20 ng; medium, 20-50 ng; high, > 50 ng), two variant allele frequency ranges (low, 0.1-0.5%; intermediate, 0.5-2.5%), and four variant types (single nucleotide, insertion/deletion, structural, and copy number). Sensitivity, specificity, reproducibility, and all processes from cell-free DNA extraction to bioinformatics analysis were assessed. The test assays were generally comparable or superior to the benchmark assay, demonstrating high analytical sensitivity. Variations in circulating tumor DNA extraction and quantification efficiency, sensitivity, and reproducibility were observed, particularly at lower inputs. These findings will guide circulating tumor DNA assay choice for research and clinical studies, allowing consideration of multiple technical parameters.


Assuntos
Ácidos Nucleicos Livres , DNA Tumoral Circulante , Neoplasias , Humanos , DNA Tumoral Circulante/genética , Reprodutibilidade dos Testes , Neoplasias/genética , DNA de Neoplasias/genética , Ácidos Nucleicos Livres/genética , Sequenciamento de Nucleotídeos em Larga Escala , Biomarcadores Tumorais/genética , Mutação
6.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338919

RESUMO

Pancreatic ductal adenocarcinoma contributes significantly to global cancer-related deaths, featuring only a 10% survival rate over five years. The quest for novel tumor markers is critical to facilitate early diagnosis and tailor treatment strategies for this disease, which is key to improving patient outcomes. In pancreatic ductal adenocarcinoma, these markers have been demonstrated to play a crucial role in early identification, continuous monitoring, and prediction of its prognosis and have led to better patient outcomes. Nowadays, biopsy specimens serve to ascertain diagnosis and determine tumor type. However, liquid biopsies present distinct advantages over conventional biopsy techniques. They offer a noninvasive, easily administered procedure, delivering insights into the tumor's status and facilitating real-time monitoring. Liquid biopsies encompass a variety of elements, such as circulating tumor cells, circulating tumor DNA, extracellular vesicles, microRNAs, circulating RNA, tumor platelets, and tumor endothelial cells. This review aims to provide an overview of the clinical applications of liquid biopsy as a technique in the management of pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Células Neoplásicas Circulantes , Neoplasias Pancreáticas , Humanos , Células Endoteliais/patologia , Neoplasias Pancreáticas/patologia , Biópsia Líquida/métodos , Carcinoma Ductal Pancreático/patologia , DNA de Neoplasias/genética , Células Neoplásicas Circulantes/patologia , Biomarcadores Tumorais/genética
7.
Ann Surg Oncol ; 31(4): 2319-2325, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38190058

RESUMO

BACKGROUND: Circulating tumor DNA (ctDNA) has emerged as an accurate real-time biomarker of disease status across many solid tumor types. Most studies evaluating the utility of ctDNA have focused on time points weeks to months after surgery, which, for many cancer types, is significantly later than decision-making time points for adjuvant treatment. In this systematic review, we summarize the state of the literature on the feasibility of using ctDNA as a biomarker in the immediate postoperative period. METHODS: We performed a systematic review evaluating the early kinetics, defined here as 3 days of ctDNA in patients who underwent curative-intent surgery. RESULTS: Among the 2057 studies identified, eight cohort studies met the criteria for evaluation. Across six different cancer types, all studies showed an increased risk of cancer recurrence in patients with detectable ctDNA in the immediate postoperative period. CONCLUSION: While ctDNA clearance kinetics appear to vary based on tumor type, across all studies detectable ctDNA after surgery was predictive of recurrence, suggesting early postoperative time points could be feasibly used for determining minimal residual disease. However, larger studies need to be performed to better understand the precise kinetics of ctDNA clearance across different cancer types as well as to determine optimal postoperative time points.


Assuntos
DNA Tumoral Circulante , Humanos , DNA de Neoplasias/genética , Neoplasia Residual , Período Pós-Operatório , Biomarcadores , Biomarcadores Tumorais/genética , Recidiva Local de Neoplasia/diagnóstico
8.
JCO Precis Oncol ; 8: e2300127, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38237099

RESUMO

PURPOSE: Recurrence after curative-intent treatment occurs in 20%-50% of patients with stage II-IV colorectal cancer (CRC), underscoring the need for early detection of minimal residual disease (MRD) using circulating tumor DNA (ctDNA). Here, we examined the pattern of use of a tumor-informed ctDNA assay in CRC MRD monitoring in routine clinical practice at Mayo Clinic, Rochester. METHODS: We conducted a retrospective analysis of health records of patients with CRC who had at least one tumor-informed ctDNA assay from May 2019 through July 1, 2022. Recurrence was defined as radiographic evidence of disease. Descriptive characteristics of the cohort, ctDNA results, and subsequent interventions were recorded. RESULTS: Of the 120 patients included, the median age at diagnosis was 67 years, 46% were female, and 94% were White. At diagnosis, 10 patients had stage I, 23 stage II, 60 stage III, and 25 stage IV disease. Of 476 ctDNA assays performed, 70% were performed in patients who had recurrent disease most commonly to monitor the effectiveness of therapeutic interventions and 16% resulted in a change in clinical decision making. There were 110 recurrences identified in 62 patients, as some patients experienced more than one recurrence over time. Compared with serum carcinoembryonic antigen levels, ctDNA results correlated better with radiologic imaging. CONCLUSION: Routine ctDNA monitoring for MRD detection has been adopted in clinical practice; however, 84% of ctDNA assays performed did not result in a change in clinical management. This suggests the need for further clinical research data to guide routine clinical use of ctDNA MRD testing in CRC.


Assuntos
Ácidos Nucleicos Livres , DNA Tumoral Circulante , Neoplasias Colorretais , Humanos , Feminino , Masculino , DNA Tumoral Circulante/genética , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Estudos Retrospectivos , DNA de Neoplasias/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética
9.
Ann Oncol ; 35(2): 229-239, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37992872

RESUMO

BACKGROUND: Increasingly, circulating tumor DNA (ctDNA) is proposed as a tool for minimal residual disease (MRD) assessment. Digital PCR (dPCR) offers low analysis costs and turnaround times of less than a day, making it ripe for clinical implementation. Here, we used tumor-informed dPCR for ctDNA detection in a large colorectal cancer (CRC) cohort to evaluate the potential for post-operative risk assessment and serial monitoring, and how the metastatic site may impact ctDNA detection. Additionally, we assessed how altering the ctDNA-calling algorithm could customize performance for different clinical settings. PATIENTS AND METHODS: Stage II-III CRC patients (N = 851) treated with a curative intent were recruited. Based on whole-exome sequencing on matched tumor and germline DNA, a mutational target was selected for dPCR analysis. Plasma samples (8 ml) were collected within 60 days after operation and-for a patient subset (n = 246)-every 3-4 months for up to 36 months. Single-target dPCR was used for ctDNA detection. RESULTS: Both post-operative and serial ctDNA detection were prognostic of recurrence [hazard ratio (HR) = 11.3, 95% confidence interval (CI) 7.8-16.4, P < 0.001; HR = 30.7, 95% CI 20.2-46.7, P < 0.001], with a cumulative ctDNA detection rate of 87% at the end of sample collection in recurrence patients. The ctDNA growth rate was prognostic of survival (HR = 2.6, 95% CI 1.5-4.4, P = 0.001). In recurrence patients, post-operative ctDNA detection was challenging for lung metastases (4/21 detected) and peritoneal metastases (2/10 detected). By modifying the cut-off for calling a sample ctDNA positive, we were able to adjust the sensitivity and specificity of our test for different clinical contexts. CONCLUSIONS: The presented results from 851 stage II-III CRC patients demonstrate that our personalized dPCR approach effectively detects MRD after operation and shows promise for serial ctDNA detection for recurrence surveillance. The ability to adjust sensitivity and specificity shows exciting potential to customize the ctDNA caller for specific clinical settings.


Assuntos
DNA Tumoral Circulante , Neoplasias Colorretais , Humanos , DNA Tumoral Circulante/genética , DNA de Neoplasias/genética , Algoritmos , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Dinamarca , Biomarcadores Tumorais/genética , Recidiva Local de Neoplasia
10.
J Transl Med ; 21(1): 873, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041139

RESUMO

BACKGROUND: Liquid biopsy provides a non-invasive approach that enables detecting circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs) using blood specimens and theoretically benefits early finding primary tumor or monitoring treatment response as well as tumor recurrence. Despite many studies on these novel biomarkers, their clinical relevance remains controversial. This study aims to investigate the correlation between ctDNA, CTCs, and circulating tumor-derived endothelial cells (CTECs)  while also evaluating whether mutation profiling in ctDNA is consistent with that in tumor tissue from lung cancer patients. These findings will help the evaluation and utilization of these approaches in clinical practice. METHODS: 104 participants (49 with lung cancer and 31 with benign lesions) underwent CTCs and CTECs detection using integrating subtraction enrichment and immunostaining-fluorescence in situ hybridization (SE-iFISH) strategy. The circulating cell-free DNA (cfDNA) concentration was measured and the mutational profiles of ctDNA were examined by Roche AVENIO ctDNA Expanded Kit (targeted total of 77 genes) by next generation sequencing (NGS) in 28 patients (20 with lung cancer and 8 with benign lesions) with highest numbers of CTCs and CTECs. Mutation validation in matched tumor tissue DNA was then performed in 9 patients with ctDNA mutations using a customized xGen pan-solid tumor kit (targeted total of 474 genes) by NGS. RESULTS: The sensitivity and specificity of total number of CTCs and CTECs for the diagnosis of NSCLC were 67.3% and 77.6% [AUC (95%CI): 0.815 (0.722-0.907)], 83.9% and 77.4% [AUC (95%CI): 0.739 (0.618-0.860)]. The concentration of cfDNA in plasma was statistically correlated with the size of the primary tumor (r = 0.430, P = 0.022) and CYFRA 21-1 (r = 0.411, P = 0.041), but not with the numbers of CTCs and CTECs. In this study, mutations were found to be poorly consistent between ctDNA and tumor DNA (tDNA) in patients, even when numerous CTCs and CTECs were present. CONCLUSION: Detection of CTCs and CTECs could be the potential adjunct tool for the early finding of lung cancer. The cfDNA levels are associated with the tumor burden, rather than the CTCs or CTECs counts. Moreover, the poorly consistent mutations between ctDNA and tDNA require further exploration.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico , Hibridização in Situ Fluorescente , Células Endoteliais , Biomarcadores Tumorais/genética , Recidiva Local de Neoplasia , DNA de Neoplasias/genética , Mutação/genética
11.
Asian Pac J Cancer Prev ; 24(12): 4035-4041, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38156835

RESUMO

BACKGROUND: Epigenetic alternations, such as DNA methylation, play a crucial role in breast tumor initiation and progression. The identification of noninvasive prognostic biomarkers has great importance in cancer management. Methylated cell-free DNA (cfDNA), circulating in the blood as a convenient tumor-associated DNA marker, can be used as a minimally invasive cancer biomarker. This study aimed to evaluate the promoter methylation status of E74-like factor 5 (ELF5) tumor suppressor gene in both tumors and plasma cell-free DNA of 80 breast cancer patients, compared with normal controls. METHODS: Plasma cfDNA concentrations were measured using quantitative real-time PCR, and methylation pattern in the ELF5 gene promoter region was performed using methylation-specific polymerase chain reaction (MS-PCR) technique. RESULTS: The data revealed a statistically significant increase in cfDNA concentrations in breast cancer patients, particularly in those with higher stages of the disease, triple-negative status, and metastasis (p<0.001). ELF5 promoter region hypermethylation was observed in 70% of breast cancer patients in both plasma cfDNA and tumor tissues. Notably, all patients with lymph node involvement and distant metastatic exhibited promoter hypermethylation in the ELF5 gene. CONCLUSION: Our findings suggest that ELF5 promoter methylation in circulating DNA could serve as a potential non-invasive prognostic molecular marker in breast cancer patients. However, further studies are warranted to evaluate its diagnostic value.


Assuntos
Neoplasias da Mama , DNA Tumoral Circulante , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Fator V/genética , Prognóstico , Metilação de DNA , Biomarcadores Tumorais/genética , DNA de Neoplasias/genética , Regiões Promotoras Genéticas/genética
12.
Cancer Biol Ther ; 24(1): 2274123, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37955635

RESUMO

Molecular residual disease (MRD), detected by circulating tumor DNA (ctDNA) can be involved in the entire process of solid tumor management, including recurrence prediction, efficacy evaluation, and risk stratification. Currently, the detection technologies are divided into two main categories, as follows: tumor-agnostic and tumor informed. Tumor-informed assay obtains mutation information by sequencing tumor tissue samples before blood MRD monitoring, followed by formulation of a personalized MRD panel. Tumor-agnostic assays are carried out using a fixed panel without the mutation information from primary tumor tissue. The choice of testing strategy may depend on the level of evidence from ongoing randomized clinical trials, investigator preference, cost-effectiveness, patient economics, and availability of tumor tissue. The review describes the difference between tumor informed and tumor agnostic detection. In addition, the clinical application of ctDNA MRD in solid tumors was introduced, with emphasis on lung cancer, colorectal cancer, Urinary system cancer, and breast cancer.


Assuntos
Neoplasias da Mama , DNA Tumoral Circulante , Neoplasias Pulmonares , Humanos , Feminino , DNA de Neoplasias/genética , DNA Tumoral Circulante/genética , Bioensaio , Compostos Radiofarmacêuticos
13.
Cancer Genomics Proteomics ; 20(6suppl): 763-770, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38035709

RESUMO

BACKGROUND/AIM: Circulating tumor DNA (ctDNA), which is shed from cancer cells into the bloodstream, offers a potential minimally invasive approach for cancer diagnosis and monitoring. This research aimed to assess the preoperative ctDNA levels in ovarian tumors patients' plasma and establish correlations with clinicopathological parameters and patient prognosis. PATIENTS AND METHODS: Tumor DNA was extracted from ovarian tumor tissue from 41 patients. Targeted sequencing using a panel of 127 genes recurrently mutated in cancer was performed to identify candidate somatic mutations in the tumor DNA. SAGAsafe digital PCR (dPCR) assays targeting the candidate mutations were used to measure ctDNA levels in patient plasma samples, obtained prior to surgery, to evaluate ctDNA levels in terms of mutant copy number/ml and variant allele frequency. RESULTS: Somatic mutations were found in 24 tumor samples, 17 of which were from ovarian cancer patients. The most frequently mutated gene was TP53. Preoperative plasma ctDNA levels were detected in 14 of the 24 patients. With higher stage, plasma ctDNA mutant concentration increased (p for trend <0.001). The overall survival of cancer patients with more than 10 ctDNA mutant copies/ml in plasma was significantly worse (p=0.008). CONCLUSION: Pre-operative ctDNA measurement in ovarian cancer patients' plasma holds promise as a predictive biomarker for tumor staging and prognosis.


Assuntos
DNA de Neoplasias , Neoplasias Ovarianas , Humanos , Feminino , DNA de Neoplasias/genética , Prognóstico , Mutação , Estadiamento de Neoplasias , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/cirurgia , Biomarcadores Tumorais/genética
14.
BMC Bioinformatics ; 24(1): 453, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036971

RESUMO

BACKGROUND: Genomic insights in settings where tumour sample sizes are limited to just hundreds or even tens of cells hold great clinical potential, but also present significant technical challenges. We previously developed the DigiPico sequencing platform to accurately identify somatic mutations from such samples. RESULTS: Here, we complete this genomic characterisation with copy number. We present a novel protocol, PicoCNV, to call allele-specific somatic copy number alterations from picogram quantities of tumour DNA. We find that PicoCNV provides exactly accurate copy number in 84% of the genome for even the smallest samples, and demonstrate its clinical potential in maintenance therapy. CONCLUSIONS: PicoCNV complements our existing platform, allowing for accurate and comprehensive genomic characterisations of cancers in settings where only microscopic samples are available.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Humanos , Genoma , Genômica , Neoplasias/genética , Neoplasias/patologia , DNA de Neoplasias/genética
15.
ESMO Open ; 8(6): 102051, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951129

RESUMO

BACKGROUND: In the setting of localized colon cancer (CC), circulating tumor DNA (ctDNA) monitoring in plasma has shown potential for detecting minimal residual disease (MRD) and predicting a higher risk of recurrence. With the tumor-only sequencing approach, however, germline variants may be misidentified as somatic variations, precluding the possibility of tracking in up to 11% of patients due to a lack of known somatic mutations. In this study, we assess the potential value of adding white blood cells (WBCs) to tumor tissue sequencing to enhance the accuracy of sequencing results. PATIENTS AND METHODS: A total of 148 patients diagnosed with localized CC were prospectively recruited at the Hospital Clínico Universitario in Valencia (Spain). Employing a custom 29-gene panel, sequencing was conducted on tumor tissue, plasma and corresponding WBCs. Droplet digital PCR and amplicon-based NGS were performed on plasma samples post-surgery to track MRD. Oncogenic somatic variants were identified by annotating with COSMIC, OncoKB and an internal repository of pathogenic mutations database. A variant prioritization analysis, mainly characterized by the match of oncogenic mutations with the evidence levels defined in OncoKB, was carried out to select specific targeted therapies. RESULTS: Utilizing paired tumor and WBCs sequencing, we identified somatic mutations in all patients (100%) within our cohort, compared to 89% using only tumor tissue. Consequently, the top 10 most frequently mutated genes for plasma monitoring were altered. The sequencing of WBCs identified 9% of patients with pathogenic mutations in the germline, with APC and TP53 being the most frequently mutated genes. Additionally, mutations in genes related to clonal hematopoiesis of indeterminate potential were detected in 27% of the cohort, with TP53, KRAS, and KMT2C being the most frequently altered genes. There were no observed differences in the sensitivity of monitoring MRD using ddPCR or amplicon-based NGS (p = 1). Ultimately, 41% of the patients harbored potentially targetable alterations at diagnosis. CONCLUSION: The germline testing method not only enhanced sequencing results and raised the proportion of patients eligible for plasma monitoring, but also uncovered the existence of pathogenic germline variations, thereby aiding in the identification of patients at a higher risk of hereditary cancer syndromes.


Assuntos
DNA Tumoral Circulante , Neoplasias do Colo , Humanos , DNA Tumoral Circulante/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , DNA de Neoplasias/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Células Germinativas/patologia
16.
J Transl Med ; 21(1): 809, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957623

RESUMO

In recent decades, using circulating tumor cell (CTC), circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), exosomes and etc. as liquid biomarkers has received enormous attention in various tumors, including breast cancer (BC). To date, efforts in the area of liquid biopsy predominantly focus on the analysis of blood-based markers. It is worth noting that the identifications of markers from non-blood sources provide unique advantages beyond the blood and these alternative sources may be of great significance in offering supplementary information in certain settings. Here, we outline the latest advances in the analysis of non-blood biomarkers, predominantly including urine, saliva, cerebrospinal fluid, pleural fluid, stool and etc. The unique advantages of such testings, their current limitations and the appropriate use of non-blood assays and blood assays in different settings are further discussed. Finally, we propose to highlight the challenges of these alternative assays from basic to clinical implementation and explore the areas where more investigations are warranted to elucidate its potential utility.


Assuntos
Neoplasias da Mama , Células Neoplásicas Circulantes , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Biomarcadores Tumorais/genética , Biópsia Líquida , DNA de Neoplasias/genética , RNA Neoplásico , Células Neoplásicas Circulantes/patologia
17.
J Transl Med ; 21(1): 725, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845764

RESUMO

BACKGROUND: Molecular Tumor Boards (MTB) operating in real-world have generated limited consensus on good practices for accrual, actionable alteration mapping, and outcome metrics. These topics are addressed herein in 124 MTB patients, all real-world accrued at progression, and lacking approved therapy options. METHODS: Actionable genomic alterations identified by tumor DNA (tDNA) and circulating tumor DNA (ctDNA) profiling were mapped by customized OncoKB criteria to reflect diagnostic/therapeutic indications as approved in Europe. Alterations were considered non-SoC when mapped at either OncoKB level 3, regardless of tDNA/ctDNA origin, or at OncoKB levels 1/2, provided they were undetectable in matched tDNA, and had not been exploited in previous therapy lines. RESULTS: Altogether, actionable alterations were detected in 54/124 (43.5%) MTB patients, but only in 39 cases (31%) were these alterations (25 from tDNA, 14 from ctDNA) actionable/unexploited, e.g. they had not resulted in the assignment of pre-MTB treatments. Interestingly, actionable and actionable/unexploited alterations both decreased (37.5% and 22.7% respectively) in a subset of 88 MTB patients profiled by tDNA-only, but increased considerably (77.7% and 66.7%) in 18 distinct patients undergoing combined tDNA/ctDNA testing, approaching the potential treatment opportunities (76.9%) in 147 treatment-naïve patients undergoing routine tDNA profiling for the first time. Non-SoC therapy was MTB-recommended to all 39 patients with actionable/unexploited alterations, but only 22 (56%) accessed the applicable drug, mainly due to clinical deterioration, lengthy drug-gathering procedures, and geographical distance from recruiting clinical trials. Partial response and stable disease were recorded in 8 and 7 of 19 evaluable patients, respectively. The time to progression (TTP) ratio (MTB-recommended treatment vs last pre-MTB treatment) exceeded the conventional Von Hoff 1.3 cut-off in 9/19 cases, high absolute TTP and Von Hoff values coinciding in 3 cases. Retrospectively, 8 patients receiving post-MTB treatment(s) as per physician's choice were noted to have a much longer overall survival from MTB accrual than 11 patients who had received no further treatment (35.09 vs 6.67 months, p = 0.006). CONCLUSIONS: MTB-recommended/non-SoC treatments are effective, including those assigned by ctDNA-only alterations. However, real-world MTBs may inadvertently recruit patients electively susceptible to diverse and/or multiple treatments.


Assuntos
Neoplasias , Estados Unidos , Humanos , National Cancer Institute (U.S.) , Estudos Retrospectivos , Mutação , Neoplasias/genética , DNA de Neoplasias/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biomarcadores Tumorais/genética
18.
Invest Ophthalmol Vis Sci ; 64(13): 35, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37862025

RESUMO

Purpose: Uveal melanoma (UM) is a tumor of the eye that metastasizes in approximately half of cases. Prognostic testing requires accessibility to tumor tissue, which is usually not available with eye-preserving therapies. Noninvasive approaches to prognostic testing that provide valuable information for patient care are therefore needed. The aim of this study was to evaluate the use of circulating cell-free plasma DNA analysis in UM patients undergoing brachytherapy. Methods: The study recruited 26 uveal melanoma patients referred to the department between February and October 2020. Blood samples were collected at various time points before, during, and after treatment, and deep amplicon sequencing was used to identify oncogenic variant alleles of the GNAQ and GNA11 genes, which serve as indicators for the presence of circulating tumor DNA (ctDNA). Results: The results showed that all patients were ctDNA negative before brachytherapy. In 31% of patients, ctDNA was detected during therapy. The variant allele fraction of GNAQ or GNA11 alleles in ctDNA positive samples ranged from 0.24% to 2% and correlates with the largest basal diameter and thickness of the tumor. Conclusions: The findings suggest that brachytherapy increases the presence of tumor DNA in the plasma of UM patients. Thus ctDNA analysis may offer a noninvasive approach for prognostic testing. However, efforts are still required to lower the limit of detection for tumor-specific genetic alterations.


Assuntos
DNA Tumoral Circulante , Neoplasias Uveais , Humanos , DNA Tumoral Circulante/genética , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Análise Mutacional de DNA , Neoplasias Uveais/genética , Neoplasias Uveais/radioterapia , Neoplasias Uveais/diagnóstico , Mutação , DNA de Neoplasias/genética
19.
Expert Rev Mol Diagn ; 23(12): 1209-1220, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37797209

RESUMO

INTRODUCTION: Advances in genomics have facilitated the application of cell-free DNA (cfDNA) and circulating tumor DNA (ctDNA) in phase II and phase III clinical trials. The various mutations of cfDNA/ctDNA have been correlated with clinical features. Advances in next-generation sequencing (NGS) and digital droplet PCR have paved the way for identifying cfDNA/ctDNA mutations. AREAS COVERED: Herein, the biology of ctDNA and its function in clinical application in metastasis, which may lead to improved clinical management of metastatic cancer patients, are comprehensively reviewed. EXPERT OPINION: Metastatic cancer ctDNA shows the greatest frequency of mutations in TP53, HER-2, KRAS, and EGFR genes (alteration frequency of > 50%). Therefore, identifying key mutations frequently present in metastatic cancers can help identify patients with pre-malignant tumors before cancer progression. Studying ctDNA can help determine the prognosis and select appropriate treatments for affected patients. Nevertheless, the obstacles to detecting and analyzing ctDNA should be addressed before translation into routine practice. Also, more clinical trials should be conducted to study the significance of ctDNA in commonly diagnosed malignancies. Given the recent advances in personalized anti-neoplastic treatments, further studies are needed to detect a panel of ctDNA and patient-specific ctDNA for various cancers.


Assuntos
Ácidos Nucleicos Livres , DNA Tumoral Circulante , Neoplasias , Humanos , DNA Tumoral Circulante/genética , DNA de Neoplasias/genética , Biomarcadores Tumorais/genética , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/patologia , Mutação , Sequenciamento de Nucleotídeos em Larga Escala
20.
Elife ; 122023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37819044

RESUMO

Despite their promise, circulating tumor DNA (ctDNA)-based assays for multi-cancer early detection face challenges in test performance, due mostly to the limited abundance of ctDNA and its inherent variability. To address these challenges, published assays to date demanded a very high-depth sequencing, resulting in an elevated price of test. Herein, we developed a multimodal assay called SPOT-MAS (screening for the presence of tumor by methylation and size) to simultaneously profile methylomics, fragmentomics, copy number, and end motifs in a single workflow using targeted and shallow genome-wide sequencing (~0.55×) of cell-free DNA. We applied SPOT-MAS to 738 non-metastatic patients with breast, colorectal, gastric, lung, and liver cancer, and 1550 healthy controls. We then employed machine learning to extract multiple cancer and tissue-specific signatures for detecting and locating cancer. SPOT-MAS successfully detected the five cancer types with a sensitivity of 72.4% at 97.0% specificity. The sensitivities for detecting early-stage cancers were 73.9% and 62.3% for stages I and II, respectively, increasing to 88.3% for non-metastatic stage IIIA. For tumor-of-origin, our assay achieved an accuracy of 0.7. Our study demonstrates comparable performance to other ctDNA-based assays while requiring significantly lower sequencing depth, making it economically feasible for population-wide screening.


Assuntos
DNA Tumoral Circulante , Detecção Precoce de Câncer , Neoplasias , Humanos , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , DNA de Neoplasias/sangue , DNA de Neoplasias/genética , Detecção Precoce de Câncer/métodos , Neoplasias Hepáticas , Neoplasias/sangue , Neoplasias/diagnóstico , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...